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Abstract. Generalized hill climbing algorithms provide a framework for modeling several

local search algorithms for hard discrete optimization problems. This paper introduces and
analyzes generalized hill climbing algorithm performance measures that reflect how effectively
an algorithm has performed to date in visiting a global optimum and how effectively an

algorithm may perform in the future in visiting such a solution. These measures are also used
to obtain a necessary asymptotic convergence (in probability) condition to a global optimum,
which is then used to show that a common formulation of threshold accepting does not

converge. These measures assume particularly simple forms when applied to specific search
strategies such as Monte Carlo search and threshold accepting.
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1. Introduction

Discrete optimization problems are defined by a finite set of solutions
and an objective function value associated with each solution (Garey and
Johnson, 1979). The goal when addressing such problems is to determine
the set of solutions for which the objective function is optimized (i.e.,
minimized or maximized). Heuristic procedures are typically formulated
with the hope of finding good or near-optimal solutions for intractable
(NP-hard) discrete optimization problems. Generalized Hill Climbing
(GHC) algorithms (Johnson and Jacobson, 2002a, b), such as simulated
annealing (Kirkpatrick et al., 1983) and threshold accepting (Dueck and
Scheuer, 1990), are a class of general local search strategies, offering a
means to find reasonable solutions to a wide variety of discrete optimiza-
tion problems. The objective of these algorithms is to find the best
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possible solution using a limited amount of computing resources. A fur-
ther challenge is to construct algorithms that find near-optimal solutions
for all instances of a particular problem, since the effectiveness of many
algorithms tends to be problem-specific, exploiting particular characteris-
tics of problem instances (e.g., Lin and Kernighan, 1973, for the traveling
salesman problem). It is therefore important to assess the performance of
algorithms and devise strategies to improve their effectiveness in solving
hard discrete optimization problems.
There are several results in the literature concerning the asymptotic

performance of simulated annealing algorithms. Mitra et al. (1986) and
Hajek (1988) provide some of the earliest results, where they develop
conditions for three convergence properties: asymptotic independence of
the starting conditions, convergence in distribution of the solutions gener-
ated, and convergence to a global optimum; they also characterize the
convergence rate. For a complete review of both theoretical and practical
results for simulated annealing, see Aarts and Korst (2002) or Henderson
et al. (2003).
The current literature focuses mainly on asymptotic convergence proper-

ties. This paper considers asymptotic as well as finite-time performance
measures of GHC algorithms where convergence cannot be guaranteed.
These measures are used to develop necessary convergence conditions for
GHC algorithms. Note that the results presented do not provide readily
deployable tools for improving the performance of GHC algorithms, but
rather, provide a mathematical framework under which the performance of
such algorithms can be described (see Orosz and Jacobson, 2002a, b, for
examples to illustrate the application of this framework). The most practi-
cal result arising from this framework is a necessary convergence condition
that provides a proof of nonconvergence for common implementations of
threshold accepting.
The paper is organized as follows: In Section 2, the GHC algorithm

framework is described, including relevant concepts from discrete opti-
mization. In Section 3, the false-negative probability performance mea-
sure for GHC algorithms is introduced and formally defined. In Section
4, this probability is used to obtain finite-time performance results for
non-convergent GHC algorithms, as well as a necessary convergence
condition for such algorithms. This necessary condition provides a proof
of nonconvergence for common implementations of threshold accepting
(as presented in Section 6). Upper and lower bounds for the false nega-
tive probability are also derived. Section 5 illustrates how these proba-
bility measures can be represented. Section 6 illustrates these expressions
for particular GHC algorithms. Section 7 summarizes the results pre-
sented.
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2. Background and Definitions

2.1. GENERALIZED HILL CLIMBING ALGORITHMS FOR DISCRETE

OPTIMIZATION PROBLEMS

For a discrete (minimization) optimization problem, define the solution
space, X, as a finite set of all possible solutions. Define an objective function
f :X! ½0;þ1] that assigns a non-negative value to each element of the
solution space. Two important components of GHC algorithms are the
neighborhood function, g :X! 2X, where gðxÞ � X for all x 2 X, and the
hill climbing random variables Rk :X� X! <, k ¼ 1; 2; . . . For each solu-
tion x 2 X, the neighborhood function gðx) defines a set of solutions that
are close to x (Aarts and Korst, 2002). The neighborhood function is
assumed to be symmetric (i.e., if x0 2 gðx00), then x00 2 gðx0) for all x0,
x00 2 X) and that x 2 gðx) for all x 2 X. Moreover, at each iteration of a
GHC algorithm, a solution is randomly generated among all neighbors of
the current solution by a neighborhood probability mass function, where
the resulting random variables are independent (given the current solution).
For example, neighbors are said to be generated uniformly at each itera-
tion of a GHC algorithm execution if, for all x 2 X, with x0 2 gðxÞ, P fx0
is selected as the neighbor of x at a given iteration of a GHC algo-
rithmg � hxðx0Þ ¼ 1=jgðxÞj. Without loss of generality, assume that if
x0 2 gðxÞ, then hxðx0Þ > 0.
The GHC algorithm is described in pseudo-code form below. By

definition, the hill climbing random variables, Rk, map points in X� X to
distributions that determine whether a randomly generated neigh-
boring solution is accepted during a particular inner loop iteration
associated with outer loop iteration k. The hill climbing random variables
are assumed to be independent. The stopping criterion for the inner loops,
STOP INNER, determines when the hill climbing random variable index k
increments by one, hence a new hill climbing random variable is used to
accept or reject neighboring solutions. By setting the STOP INNER crite-
rion to check whether the current solution is a local optimum, the hill
climbing random variable changes only when a local optimum is visited;
this will be further discussed in Section 2.2.
Although the range of the hill climbing random variables can be the set

of real numbers, <, in practice they are typically restricted to the set of
non-negative real numbers, <þ (which is what will be assumed for the rest
of the paper). Therefore, for minimization problems, when a randomly
generated neighboring solution has objective function value greater than
the current solution, then the neighboring solution is accepted (hence
becomes the new current solution) if the difference between the objective
function values is not too large (i.e., smaller than the value generated for
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the hill climbing random variable). This concept of accepting an inferior
solution is the origin for the name ‘‘hill climbing’’.

Define a neighborhood function g and a set of hill climbing random

variables Rk

Set the iteration indices i ¼ 0; k ¼ 1 and select an initial solution xð0Þ 2 X

Repeat

Repeat

Generate a neighboring solutionx 2 gðxðiÞÞ according to hxðiÞðxÞ
Compute dðxðiÞ;xÞ ¼ fðxÞ � fðxðiÞÞ
Generate an observation R from the random variable RkðxðiÞ;xÞ
If RPdðxðiÞ;xÞ; then xðiþ 1Þ  x (accept improving or hill

climbing movesÞ
If R < dðxðiÞ;xÞ; then xðiþ 1Þ  xðiÞ (reject hill climbing moves)

i iþ 1

Until STOP INNER

k kþ 1

Until STOP OUTER

Assume that the hill climbing random variables have finite means and finite
variances (i.e., E½jRkðxðiÞ;xÞj� < þ1 and Var[RkðxðiÞ;xÞ� < þ1 for all
xðiÞ 2 X;x 2 gðxðiÞÞ; k ¼ 1; 2; . . . ; i ¼ 1; 2; . . .Þ.
The neighborhood function establishes relationships between the solu-

tions in the solution space, hence allows the solution space to be traversed
or searched by moving between solutions. To ensure that the solution
space is not fragmented, assume that all the solutions in the solution space
(with neighborhood function g and neighborhood probability mass func-
tion hðxÞ) are reachable (i.e., for all x0;x00 2 X, there exists a set of solu-
tions x1;x2; . . . ;xm 2 X such that xr 2 gðxr�1Þ, r ¼ 1; 2; . . . ;mþ 1, where
x0 � x0 and x00 � xmþ1). If all solutions in the solution space are reach-
able, then the solution space (with neighborhood function g) is said to be
reachable. Note that solution space fragmentation can be a problem, for
example, in some implementations of tabu search with a deterministic tabu
list. Fox (1993) describes a clever method on avoiding fragmentation alto-
gether. The objective function, f, and the neighborhood function, g, allow
the solution space, X, to be decomposed into three mutually exclusive and
collectively exhaustive sets:

– a set of global optima, G ¼ fx� 2 X : fðx�ÞO fðxÞ for all x 2 Xg;
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– a set of local optima that are not global optima, L � LðgÞ ¼
fx 2 XnG : fðxÞO fðx0Þ for all x0 2 gðxÞg;

– a set of hill solutions, H ¼ XnðG [ LÞ.

Therefore G [ L are the set of local optima in X associated with neighbor-
hood function g, where by definition, X ¼ G [ L [H with G \ L ¼ [,
G \H ¼ [, and L \H ¼ [. Note also that for all x 2 G; gðxÞ \ L ¼ [,
and for all x 2 L, gðxÞ \ G ¼ [ (i.e., a global optimum and a local opti-
mum cannot be neighbors).
In practice, the best solution obtained over the entire GHC algorithm

run, not just the final solution, is reported. This allows the algorithm to
aggressively traverse the solution space visiting many inferior solutions en
route to a globally optimal solution, while retaining the best solution
obtained through the entire GHC run. By design, GHC algorithms are
sampling procedures over the solution space X. For example, Monte Carlo
search generates independent samples (with replacement) from the solution
space, while simulated annealing generates samples guided by the neighbor-
hood function, the objective function, and the temperature parameter.
More specifically, simulated annealing can be described as a GHC
algorithm by setting RkðxðiÞ;xÞ ¼ �tðkÞ lnðmiÞ;xðiÞ 2 X;x 2 gðxðiÞÞ; k ¼
1; 2; . . ., where tðkÞ is the temperature parameter (hence, defines a cooling
schedule as tðkÞ ! 0Þ and mi are independent and identically distributed
Uð0; 1Þ random variables. Note that in the ‘‘accept improving or hill climb-
ing moves’’ step of the GHC algorithm pseudo-code, for the simulated
annealing hill climbing random variable, RkðxðiÞ;xÞPdðxðiÞ;xÞ becomes
miO exp�dðxðiÞ;xÞ=tðkÞ, which is the standard form in which the simu-
lated annealing hill climbing acceptance probability is described (Aarts and
Korst, 2002). Other algorithms that can be described using the GHC
framework include threshold accepting (Dueck and Scheuer, 1990), some
simple forms of tabu search (Glover and Laguna, 1997), Monte Carlo
search, deterministic local search, the noising method (Charon and Hudry,
2001), and Weibull accepting (see Jacobson et al., 1998 and Johnson and
Jacobson, 2002a, b, for a discussion on how these algorithms can be fit
into the GHC algorithm framework).

2.2 CLASSIFYING THE ITERATIONS FOR GENERALIZED HILL CLIMBING
ALGORITHMS

The iterations of a GHC algorithm can be classified using the concept of
macro iterations. A macro iteration is a set of consecutive iterations that
move the algorithm from any element of G [ L to any element of G [ L
(including itself ), where the solutions at any intervening iterations are (not
necessarily distinct) elements of H. From the pseudo-code in Section 2.1,
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by requiring that the STOP INNER criterion checks whether the current
solution is a local optimum, then the outer loops correspond to macro iter-
ations. If there are a polynomial number of neighboring solutions of the
current solution or the neighborhood of the current solutions can be
searched in polynomial time, then verifying that the current solution is a
local optimum can be done in polynomial time. Assume that this is the
case, hence local optimality can be verified in polynomial time.
Using this STOP INNER criterion, at macro iteration k fixed, the itera-

tions can be modeled as a homogeneous discrete-time Markov chain, with
jXj � jXj transition matrix

Pk ¼
Pk
GG Pk

GL Pk
GH

Pk
LG Pk

LL Pk
LH

Pk
HG Pk

HL Pk
HH

2
4

3
5;

where the entries of Pk denote the single iteration transition probabilities
between all elements of X. Without loss of generality, assume that the
GHC algorithm run is initialized at a solution xð0Þ 2 L, since local search
can be applied from any element in X, and the solution space is reachable.
This places a restriction on the classes of discrete optimization problems
that can be studied, since if a local optimum cannot be obtained in polyno-
mial time in the size of the problem instance, then initializing the GHC
algorithm run in this way may not be feasible (see Johnson et al., 1988;
Jacobson and Solow, 1993). In addition, if local search is applied and the
local optimum obtained is a global optimum, then the problem is solved,
though this may not be known until further iterations are executed.
In the pseudo-code presented in Section 2.1, for k fixed, the macro itera-

tions can also be modeled as a homogeneous discrete-time Markov chain,
with a ðjGj þ jLjÞ � ðjGj þ jLjÞ macro iteration transition matrix,

Pk
M ¼

Pk
GH

Xþ1
j¼0
ðPk

HHÞ
j

" #
Pk
HG þ Pk

GG Pk
GH

Xþ1
j¼0
ðPk

HHÞ
j

" #
Pk
HL þ Pk

GL

Pk
LH

Xþ1
j¼0
ðPk

HHÞ
j

" #
Pk
HG þ Pk

LG Pk
LH

Xþ1
j¼0
ðPk

HHÞ
j

" #
Pk
HL þ Pk

LL

2
66664

3
77775;

where the entries represent the probability of a GHC algorithm moving
from any element of G [ L to any element of G [ L (including itself), pass-
ing only through elements of H (Sullivan and Jacobson, 2001). If Pk

HH is
the zero matrix, then set ðPk

HHÞ
0 � I, the identity matrix. Matrix Pk

M can
be simplified, since for all x 2 G, gðxÞ \ L ¼ [, and for all x 2 L,
gðxÞ \ G ¼ [ (i.e., a global optimum and a local optimum cannot be
neighbors), hence Pk

GL and Pk
LG are both zero matrices. Moreover, if a glo-

bal optimum cannot be a neighbor of another global optimum, and a local
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optimum cannot be a neighbor of another local optimum, then Pk
GG and

Pk
LL are both diagonal square matrices.

3. The False Negative Probability for Generalized Hill Climbing Algorithms

Consider a GHC algorithm applied to an instance of a discrete optimiza-
tion problem. Assume that RkðxðiÞ;xÞP0 for all xðiÞ 2 X;x 2 gðxðiÞÞ, for
all outer loop, macro iterations k ¼ 1; 2; . . .. At each macro iteration k,
define the event

BðkÞ �fThe algorithm does not visit any element of G over

first k macro iterationsg
ð1Þ

and its complementary event

BcðkÞ � fThe algorithm visits G over the first k macro iterationsg: ð2Þ
By definition, BðkÞ � Bðkþ 1Þ for all macro iterations k, hence fBðkÞg is a
telescoping, non-increasing sequence of events in k. Therefore, by the
Monotone Convergence Theorem (Billingsley, 1979),

PfBðkÞg ! PfBg ¼ P
\þ1
k¼1

BðkÞ
( )

as k! þ1: ð3Þ

Over the first k macro iterations, the algorithm visits k solutions,
fx1;x2; . . . ;xkg � G [ L. Define f k to be the minimum objective function
value among these k solutions and xk to be the associated solution (i.e.,
f k ¼ fðxkÞ with xk ¼ argminffðxjÞ, j ¼ 1; 2; . . . ; kgÞ. In practice, the best
solution to date (i.e., xk) is reported. The key issue is whether xk 2 G. If
xk 2 G, then the algorithm should be terminated no later than macro
iteration k, while if xk 62 G, then it would be desirable to determine
whether the algorithm will at some future macro iteration visit a solution
in G. Therefore, Pfxk 2 Gg ¼ PfBcðkÞg provides an algorithm perfor-
mance measure for the solutions obtained within the first k macro itera-
tions.
To establish the relationship between the convergence of a GHC algo-

rithm and the event B, the following definition is needed.

DEFINITION 1. A GHC algorithm converges in probability to G if
PfCðkÞg ! 1 as k! þ1, where CðkÞ � fxk 2 Gg ¼ fThe algorithm is at
an element of G at macro iteration kg:
Therefore, given an initial solution xð0Þ 2 L, if a GHC algorithm con-

verges in probability to G (as k! þ1Þ, then PfBcg ¼ 1. Equivalently, if
PfBcg < 1, then the algorithm does not converge in probability to G. The
convergence behavior of GHC algorithms is further investigated in Section 4.
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In light of these observations, the false-negative problem asks whether a
GHC algorithm will eventually visit G, given that the algorithm, after exe-
cuting a finite number of macro iterations, has yet to visit G. The false neg-
ative probability is formally defined.

DEFINITION 2. For a GHC algorithm, the false-negative probability at
macro iteration k is PfBcjBðkÞg, provided PfBðkÞg > 0.

The false-negative probability at macro iteration k provides a measure
for the effectiveness of a GHC algorithm, namely the ability of an algo-
rithm to visit G beyond macro iteration k. In particular, if PfBcg is
small, then one can use the false-negative probability to assess whether a
GHC algorithm will eventually visit G; if the false-negative probability at
macro iteration k is sufficiently close to zero, then the algorithm may be
terminated.

4. Asymptotic Properties of Generalized Hill Climbing Algorithms

This section derives a necessary convergence condition for GHC algo-
rithms. Recall that PfBð0Þg ¼ 1 (i.e., all GHC algorithm runs are initial-
ized at an element of L). Furthermore, unless otherwise stated, assume that
PfBcðkÞg < 1 for all macro iterations k ¼ 1; 2; . . ..
For macro iteration k, define the conditional probability

rðkÞ � PfBcðkÞjBðk� 1Þg ¼ PfCðkÞjBðk� 1Þg: ð4Þ
This probability can be used to quantify the false-negative probability.
lemma 1. expresses the relationship between (4) and (1).

LEMMA 1. Given a GHC algorithm initialized at solution xð0Þ 2 L,
(i) PfBðkÞg ¼

Qk
j¼1½1� rð jÞ� for all macro iterations k.

(ii) PfBg ¼
Qþ1

j¼1 ½1� rð jÞ�.

Proof. By the definition of rðjÞ, 1� rðjÞ ¼ PfBð jÞjBð j� 1Þg ¼ PfBð jÞ\
Bð j� 1Þg=PfBð j� 1Þg ¼ PfBð jÞg=PfBð j� 1Þg. Therefore, since PfBð0Þg ¼
1, then (i) holds. Letting k! þ1 in (i) establishes (ii). (

Theorem 1 provides a closed form expression for the false-negative prob-
ability.

THEOREM 1. Given a GHC algorithm initialized at solution xð0Þ 2 L, for
all macro iterations k with PfBðkÞg > 0,

PfBcjBðkÞg ¼ 1�
Yþ1

j¼kþ1
½1� rðjÞ�: ð5Þ
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Proof. Since fBðkÞg are telescoping non-increasing events, then using (4),
for all macro iterations m and k, m > k, with PfBðkÞg > 0

PfBcðmÞjBðkÞg ¼ ½PfBðkÞg � PfBðmÞg�=PfBðkÞg

¼
Yk
j¼1
½1� rð jÞ� �

Ym
j¼1
½1� rð jÞ�

" # Yk
j¼1
½1� rð jÞ�

,

¼ 1�
Ym

j¼kþ1
½1� rð jÞ�:

Taking the limit as m! þ1 establishes (5). (
Theorem 2 provides upper and lower bounds for the false-negative prob-

ability.

THEOREM 2. Given a GHC algorithm initialized at initial solution
xð0Þ 2 L, then for all macro iterations k with PfBðkÞg > 0,

1� exp �
Xþ1
j¼kþ1

rð jÞ
( )

OPfBcjBðkÞgO1� exp �
Xþ1
j¼kþ1
½rð jÞ�=½1� rð jÞ�

( )
:

ð6Þ

Proof. For all macro iterations k with PfBðkÞg > 0, from Lemma 1,
rðjÞ < 1 for all j ¼ 1; 2; . . . ; k. Therefore, for all macro iterations m and k
with m > k and PfBðmÞg > 0, hence rðjÞ < 1 for all j ¼ 1; 2; . . . ;m,

1� exp �
Xm
j¼kþ1

rð jÞ
( )

OPfBcðmÞjBðkÞg

O1� exp �
Xm
j¼kþ1
½rð jÞ�=½1� rð jÞ�

( )
:

To see this, from the proof of Theorem 1, for m > k, PfBcðmÞjBðkÞg ¼
1�

Qm
j¼kþ1½1� rðjÞ�. Therefore, PfBðmÞjBðkÞg ¼

Qm
j¼kþ1 ½1� rðjÞ�, which

implies that

ln½PfBðmÞjBðkÞg� ¼
Xm
j¼kþ1

ln½1� rðjÞ�:

For 0 < rðjÞ < 1; j ¼ kþ 1; kþ 2; . . . ;m,
�rð jÞ=½1� rðjÞ�O ln½1� rð jÞ�O� rðjÞ:

Therefore,

�
Xm
j¼kþ1
½rðjÞ�=½1� rðjÞ�O ln½PfBðmÞjBðkÞg�O�

Xm
j¼kþ1

rðjÞ:
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Taking the exponential function and the limit as m! þ1 establishes the
result. (

To compute the false-negative probability for both convergent and non-
convergent GHC algorithms, Proposition 1 establishes the relationship
between convergence in probability to G and visits to G in probability.

PROPOSITION 1. If a GHC algorithm converges in probability to G, then
the GHC algorithm visits G in probability (i.e., PfBcjBðkÞg ¼ 1 for all macro
iterations k ¼ 1; 2; . . . with PfBðkÞg > 0Þ.

Proof. By the definition of conditional probability,

PfBjBðkÞg ¼ PfB \ BðkÞg=PfBðkÞg
¼ PfBg=PfBðkÞg for all macro iterations k ¼ 1; 2; . . .

Since CðmÞ � BcðmÞ, then BðmÞ � CcðmÞ for all macro iterations
m ¼ 1; 2; . . . Therefore, for all macro iterations k ¼ 1; 2; . . .

PfBg=PfBðkÞgO lim
m!þ1

PfCcðmÞg=PfBðkÞg ¼ 0

hence PfBcjBðkÞg ¼ 1 for all macro iterations k ¼ 1; 2; . . . (

Proposition 2 provides necessary and sufficient conditions for a GHC
algorithm to visit G in probability (i.e., the false-negative probability is one
for all macro iterations).

PROPOSITION 2. A GHC algorithm visits G in probability if and only ifPþ1
j¼1 rðjÞ ¼ þ1.

Proof. (() If
Pþ1

j¼1 rðjÞ ¼ þ1, then
Pþ1

j¼kþ1 rð jÞ ¼ þ1 for all macro itera-
tions k, hence from the lower bound in (6), PfBcjBðkÞg ¼ 1 for all macro
iterations k with PfBðkÞg > 0. Therefore, the GHC algorithm visits G in
probability. ()) If the GHC algorithm visits G in probability (i.e.,
PfBcjBðkÞg ¼ 1 for all macro iterations k with PfBðkÞg > 0Þ, then from
the upper bound in (6),

Pþ1
j¼kþ1 rðjÞ=½1� rðjÞ� ¼ þ1 for all macro iterations

k. To complete the proof, it is necessary to show thatPþ1
j¼kþ1 rðjÞ=½1� rðjÞ� ¼ þ1 implies that

Pþ1
j¼1 rðjÞ ¼ þ1. To see this, sup-

pose that
Pþ1

j¼1 rðjÞ < þ1. Then for all e > 0, there exists a non-negative
integer jðeÞ such that rðjÞOe for all jPjðeÞ. Therefore,

rðjÞ=ð1� rð jÞÞOrð jÞ=ð1� eÞ
for all jPjðeÞ, which implies thatXþ1

j¼jðeÞ
rð jÞ=ð1� rðjÞÞO

Xþ1
j¼jðeÞ

rð jÞ=ð1� eÞ: ð7Þ

However, if the right hand side of (7) is finite, then the left hand side must
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also be finite, which contradicts that the left hand side diverges. Therefore,Pþ1
j¼1 rð jÞ ¼ þ1. (

Proposition 3 establishes the relationship between a GHC algorithm vis-
iting G in probability and PfBcg.

PROPOSITION 3. A GHC algorithm visits G in probability if and only if
PfBcg ¼ 1.

Proof. The result follows from the law of total probability, since
PfBcg ¼ PfBcjBðkÞgPfBðkÞg þ PfBcjBcðkÞgPfBcðkÞg: (

Theorem 3 summarizes the relationship between PfBcg, the false negative
probabilities, r(k), visits G in probability, and convergence in probability
to G.

THEOREM 3. Given a GHC algorithm initialized at initial solution xð0Þ 2
L, consider the expressions

(D1) PfCðkÞg ! 1 as k! þ1 (converges in probability to G).
(D2) PfBcjBðkÞg ¼ 1 for all macro iterations k (visits G in probability).
(D3) PfBcg ¼ 1 (visits G in probability).
(D4)

Pþ1
j¼1 rð j Þ ¼ þ1 for all macro iterations k.

Then ðD1Þ ) ðD2Þ , ðD3Þ , ðD4Þ.

Proof. Follows from Propositions 1, 2, and 3. (

Theorem 3 provides three necessary conditions for the convergence of a
GHC algorithm. The only restriction on how the GHC algorithm tra-
verses the solution space is that PfBðkÞg > 0 for all macro iterations
k ¼ 1; 2; . . . This restriction means that there is no finite-time convergence
to G with probability one. Note that from Lemma 1, if
PfBg ¼

Qþ1
j¼1 ½1� rð jÞ� > 0, then from Theorem 3, the GHC algorithm

does not converge in probability to G. Moreover, since CðkÞ � BcðkÞ for
all macro iterations k ¼ 1; 2; . . . ; then PfCðkÞgO1�

Qþ1
j¼1 ½1� rð jÞ� for all

macro iterations k.

5. False-Negative Probability Representation

This section derives closed-form expressions for r(k) such that the results
in Section 4 can be applied to GHC algorithms, including the computation
of the false-negative probability and condition (D4) in Theorem 3. To
obtain such an expression, the following definition is needed to represent
rðkÞ as a function of the macro iteration transition matrix, Pk

M.
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DEFINITION 3. For all x 2 L, at macro iteration k, Qðx; kÞ � BðkÞ\ fThe
algorithm is at solution x at macro iteration kg with q(x; k) =
PfQðx; kÞg. Theorem 4 provides a closed-form expression for r(k) in terms
of the macro iteration transition matrix. This expression is used in Section
6 to identify properties of non-convergent GHC algorithms.

THEOREM 4. Given a GHC algorithm initialized at initial solution xð0Þ 2
L, then for all macro iterations k,

rðkÞ ¼
X
x22L

X
x12G

qðx2; k� 1ÞPk
LHðx2; �Þ

Xþ1
j¼0

Pk
HH

� �j" #
Pk
HGð�;x1Þ: ð8Þ

Proof. By the law of total probability,

rðkÞ ¼
X
x22L

qðx2; k� 1ÞPfBcðkÞjQðx2; k� 1Þg

¼
X
x22L

X
x12G

qðx2; k� 1ÞPk
LHðx2; �Þ

Xþ1
j¼0
ðPk

HHÞ
j

" #
Pk
HGð�;x1Þ: (

The closed-form expression for rðkÞ in Theorem 4 can be expressed in
terms of the hill climbing random variable Rk. To see this, for all
x1 2 G;x2 2 L, x3;x4 2 H,

Pk
LHðx2;xÞ¼

ð1=jgðx2ÞjÞPfRkðx2;xÞPdðx2;xÞg; x2gðx2Þ\H
0; x 62gðx2Þ\H

�
ð9Þ

and

Pk
HHðx3;x4Þ¼

ð1=jgðx3ÞjÞPfRkðx3;x4ÞPdðx3;x4Þg; dðx3;x4Þ> 0;
x4 2 gðx3Þ\H;

�

1=jgðx3Þj; dðx3;x4ÞO0;
x4 2 gðx3Þ\H;

�

0;
x3 2H;
x4 62 gðx3Þ\H:

�

8>>>>>>>>><
>>>>>>>>>:

ð10Þ
Moreover, for all x1 2 G, x 2 H,

Pk
HGðx;x1Þ ¼

ð1=jgðxÞjÞ; x1 2 gðxÞ \ G;
0; x1 62 gðxÞ \ G:

�
ð11Þ

To determine whether
Pþ1

k¼1 rðkÞ converges, only the most dominant terms
in (8) need to be considered (i.e., the terms in (8) that approach zero the
slowest as k! þ1). From (9)–(11), the most dominant terms in (8) are
OðPfRkðx2;xÞPdðx2;xÞgÞ for x2 2 L, x 2 gðx2Þ \H (as Rk !P 0 as
k! þ1Þ. Therefore, if the hill climbing random variables are defined such
that the probability of moving from any local optimum in a single iteration
converges to zero sufficiently fast (as the number of macro iterations
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approaches infinity) so that the infinite sum (over k) of the r(k) converges
(i.e., (D4)), then from Theorem 3, the resulting GHC algorithm will not
converge in probability to G. This necessary condition provides a simple
feature to check for a given GHC algorithm, hence can be used to deter-
mine when a particular GHC does not converge.
To use this result in practice, PfRkðx2;xÞPdðx2;xÞg, x2 2 L,

x 2 gðx2Þ \H, can be bounded above using the first and second moments
of Rkðx2;xÞ. For example, from Markov’s inequality,

PfRkðx2;xÞPdðx2;xÞgOE½Rkðx2;xÞ�=dðx2;xÞ ð12Þ

for x2 2 L, x 2 gðx2Þ \H, (where dðx2;xÞ > 0Þ. Moreover, by the one-
sided Chebyshev inequality,

PfRkðx2;xÞP dðx2;xÞgOVar½Rkðx2;xÞ�=½Var½Rkðx2;xÞ�
þ ðdðx2;xÞ � E½Rkðx2;xÞ�Þ2�:

ð13Þ:

If either of these upper bounds approaches zero sufficiently fast such thatPþ1
k¼1 rðkÞ < þ1, then the GHC algorithm does not converge in probabil-

ity to G.
To illustrate the use of these bounds, consider a simulated annealing algo-

rithm with temperature parameters tðkÞ ¼ 1=k2. Then E½Rkðx2;xÞ� ¼ 1=k2

and from (12), PfRkðx2;xÞPdðx2;xÞgO1=ðk2dðx2;xÞÞ, which implies that
r(k) < +1. Therefore, from Theorem 3, this simulated annealing algorithm
does not converge in probability to G. On the other hand, for a simulated
annealing algorithm with temperature parameters tðkÞ ¼ 1=k, E½Rkðx2;xÞ�
¼ 1=k and from (12), PfRkðx2;xÞP dðx2;xÞgO1= ðkdðx2;xÞÞ, which is
not sufficient (from Theorem 3) to show that this simulated annealing
algorithm does not converge in probability to G. However, Var½Rkðx2;xÞ� ¼
1=k2 and from (13), PfRkðx2;xÞP dðx2;xÞgOð1=k2Þ=½1=k2þ
ðdðx2;xÞ � 1=kÞ2� ¼ Oðð1=kdðx2;xÞÞ2Þ for k large, which implies thatPþ1

k¼1 rðkÞ < þ1: Therefore, from Theorem 3, this simulated annealing
algorithm does not converge in probability to G.

6. Illustrative Examples

The results presented in Sections 3–5 can be used to assess the performance
of various GHC algorithms. In this section, the performance of four GHC
algorithms, Monte Carlo search, random-restart local search, threshold
accepting, and simulated annealing are evaluated.

6.1. MONTE CARLO SEARCH

Monte Carlo search is the process of randomly generating a large set of
solutions in the solution space and taking the best solution among those
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generated. Theorem 3 implies that the false-negative probability is one (for
all macro iterations) for Monte Carlo search. To see this, Monte Carlo
search can be described as a GHC algorithm by setting gðxÞ ¼ X for all
x 2 X, and Rk ¼ maxj fðxÞ � fðx0Þj, x 2 X, x0 2 gðxÞ for all macro itera-
tions k ¼ 1; 2; . . .. If pðGÞ � jGj=ðjGj þ jLjÞ, then rðkÞ ¼ pðGÞ. Therefore,
PfBðkÞg ¼ ½1� pðGÞ�k. For macro iterations j and k, with m > k,

PfBcðmÞjBðkÞg ¼ 1� ½1� pðGÞ�m�k;
which approaches one as m! þ1. Moreover, from Theorem 3,Pþ1

j¼1 rð jÞ ¼
Pþ1

j¼1 pðGÞ ¼ þ1 . This means that Monte Carlo search visits
G in probability as k! þ1. However, PfCðkÞg ¼ pðGÞ for all macro iter-
ations k, hence Monte Carlo search does not converge in probability to G
(i.e., from Theorem 3, (D2), (D3), and (D4) all hold, but (D1) is not satis-
fied).

6.2. RANDOM-RESTART LOCAL SEARCH

Random-restart local search (or multi-start local search; see Marti, 2003)
combines Monte Carlo search and local search, by randomly selecting a
new initial solution every time a local search algorithm terminates at a
local optimum. The analysis in Section 6.1 for Monte Carlo search also
shows that the false-negative probability is one (for all macro iterations)
for random-restart local search, by redefining p(G) to be the probability
that a randomly generated initial solution in X will terminate at an element
of G. Moreover, random-restart local search will not converge in probabil-
ity to G (i.e., from Theorem 3, (D2), (D3), and (D4) all hold, but (D1) is
not satisfied).

6.3. THRESHOLD ACCEPTING

Threshold accepting is a particular GHC algorithm with
RkðxðiÞ;xÞ ¼ tðkÞ;xðiÞ 2 X, x 2 gðxðiÞÞ, for macro iteration k, where t(k)
! 0 as k ! +1. Therefore, there exists e > 0 sufficiently small and a
macro iteration k0 such that jtðkÞj < e and PfRkðxðiÞ;xÞP dðxðiÞ;xÞg ¼ 0
for all xðiÞ 2 L;x 2 gðxðiÞÞ, and all kPk0, hence (D4) in Theorem 3 does
not hold. This implies that this common implementation of threshold
accepting does not converge in probability to G. However, if tðkÞ is set
such that it does not approach zero, hence rðkÞPd for some d > 0 and for
all macro iterations k, then (D4) in Theorem 3 may hold and the probabil-
ity of a false negative is one at all macro iterations k. However, setting
tðkÞ in this way may not be feasible in practice, since it requires full knowl-
edge of the solution space (with respect to the depth of all local and global
optima; see Hajek, 1988). Although the given formulation of threshold
accepting does not converge in probability to G, it often yields satisfactory
results in practice (Nissen and Paul, 1995; Abboud et al., 1998; Franz
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et al., 2001). This observation further supports the belief that asymptotic
convergence is not necessarily a good predictor of finite-time performance.

6.4. SIMULATED ANNEALING

Simulated annealing is a particular GHC algorithm with
RkðxðiÞ;xÞ ¼ �tðkÞ lnðmiÞ;xðiÞ 2 X;x 2 gðxðiÞÞ; k ¼ 1; 2; . . ., where t(k) is
the temperature parameter (hence, defines a cooling schedule as tðkÞ ! 0)
and fmig are independent and identically distributed Uð0; 1Þ random vari-
ables. The necessary condition (D4) in Theorem 3 can be related to the
convergence conditions for simulated annealing presented in Hajek
(1988). In particular, Hajek (1988) shows that simulated annealing con-
verges in probability to a global optimum if and only ifPþ1

k¼1 e
�ðd �=tðkÞÞ ¼ þ1, where the temperature parameters t(k) define a

nonincreasing cooling schedule (that approaches zero as k! þ1), and
d � is the maximum depth of all local optima (i.e., the maximum gap in
objective function value between an element of L and the solution in H
that can reach an element of G via local search, where the maximum is
taken over all elements of L). This result assumes that the depth of all
elements in G is infinity, hence once a global optimum is reached, simu-
lated annealing cannot escape from it (with probability one). Since the
neighborhood function g is defined such that the solution space is reach-
able, then at each macro iteration k that is sufficiently large, there is a
positive probability that the algorithm will need to escape from each ele-
ment of L and move to an element of G. In particular, at each macro
iteration k sufficiently large, the conditional probability r(k) has a compo-
nent that includes the probability of escaping from the deepest local opti-
mum. Therefore, using the law of total probability,

rðkÞ ¼
X
x2L

rðkjx 2 L is visited at macro iteration k� 1Þ

Pfx 2 L is visited at macro iteration k� 1g:
Therefore, there exists a lower bound for rðkÞ that is a linear function of
Pfmoving from the deepest element of L to an element of Gg =
PfAccepting hill climbing moves out of the deepest element of L to an ele-
ment of Gg ¼ Oðe�ðd �=tðkÞÞ), since the hill climbing random variable at
macro iteration k is exponential with mean 1=tðkÞ. Therefore, ifPþ1

k¼1 e
�ðd �=tðkÞÞ ¼ þ1, then condition (D4) in Theorem 3 is satisfied.

Another consequence of Theorem 3 is that different simulated anneal-
ing algorithms may not converge in probability to G, but they may visit
G in probability. For example, fixed temperature implementations of sim-
ulated annealing are provably non-convergent (since the temperature
parameter does not approach zero), but visit G in probability (since
rðkÞ > e > 0 for all k for some e fixed). Cohn and Fielding (1999) and
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Fielding (2000) present interesting theoretical and empirical results that
suggest that there is an optimal fixed temperature for simulated annealing
for different classes of problems. Orosz and Jacobson (2002a, b) also
present results with fixed temperature simulated annealing algorithms,
including analytical expressions for the expected number of iterations
needed to reach a prespecified objective function value. The results in
Theorem 3 are consistent with the observations in Cohn and Fielding
(1999) and Fielding (2000). Moreover, from Lemma 1, the rate at whichQk

j¼1½1� rð jÞ� converges to zero as k! þ1 (or equivalently, the rate at
which

Pk
j¼1 rð jÞ diverges to infinity as k! þ1Þ may provide a measure

for comparing two fixed temperature simulated annealing algorithms.
Work is in progress to study this measure and provide a practical
approach for such an analysis, hence provide an alternative means to
obtain the results reported in Cohn and Fielding (1999) and Fielding
(2000).

7. Summary

This paper introduces the false negative probability as a performance mea-
sure that reflects how effectively a GHC algorithm has performed to date
in visiting a global optimum as well as how effectively a GHC algorithm
can be expected to perform in the future to visit such a solution. This
paper also presents expressions and bounds for the false negative probabil-
ity, and illustrates how these expressions and bounds can be computed for
particular GHC algorithms. These expressions are used to create necessary
convergence conditions for GHC algorithms. One of these conditions is
then used to prove that a common implementation of threshold accepting
is nonconvergent.
Work is in progress to show how the false negative probability can be

used to develop guidelines to design effective run strategies for GHC algo-
rithms that do not converge in probability to a global optimum. These
guidelines can be useful in determining stopping conditions once the mar-
ginal value of additional iterations is deemed negligible. Work is also in
progress to identify new performance measures for GHC algorithms that
complement the false negative probability.
On a broader scale, the framework developed in this paper shows how

different GHC algorithms for discrete optimization problems can be com-
pared and evaluated using a single performance measure. The results in
this paper represent a first step towards the development of a performance
theory for GHC algorithms, hence foster new avenues for future research
on the evaluation of GHC algorithm performance, independent of the spe-
cific problems being addressed.
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